
UCRL-TR-217422

Evaluating Mobile Graphics Processing
Units (GPUs) for Real-Time Resource
Constrained Applications

J. Meredith, J. Conger, Y. Liu, J. Johnson

November 30, 2005

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

 This work was performed under the auspices of the U.S. Department of Energy by University of
California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

Meredith, Conger, Liu, Johnson Mobile GPUs

UCRL-TR-217422 page 1

Evaluating Mobile Graphics Processing Units (GPUs) for
Real-Time Resource Constrained Applications

Jeremy Meredith (PI), Jim Conger, Yang Liu

John Johnson (Programmatic Supervisor)

This work was performed under the auspices of the U.S. Department of Energy by University of California,
 Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

Executive Summary
Modern graphics processing units (GPUs) can provide tremendous
performance boosts for some applications beyond what a single CPU can
accomplish, and their performance is growing at a rate faster than CPUs as
well. Mobile GPUs available for laptops have the small form factor and
low power requirements suitable for use in embedded processing. We
evaluated several desktop and mobile GPUs and CPUs on traditional and
non-traditional graphics tasks, as well as on the most time consuming
pieces of a full hyperspectral imaging application. Accuracy remained
high despite small differences in arithmetic operations like rounding.
Performance improvements are summarized here relative to a desktop
Pentium 4 CPU:

 NVIDIA
6800GT

NVIDIA
Go6800Ultra

ATI x300
Mobility

Geo-registration (static) 404.3× 367.5× 69.3×

Geo-registration (video) 61.5× 50.3× 30.4×

Text Indexing (peak) 4.6× 5.3× –

Convolution
(procedural, small kernel)

2.4× 2.0× 0.9×

Convolution
(procedural, large kernel)

29.1× 25.6× –

Convolution
(2-texture, small kernel)

2.7× 1.7× 0.9× A
rt

if
ic

ia
l B

en
ch

m
ar

ks

Convolution
(2-texture, large kernel)

12.4× 11.8× –

HSI Covariance Matrix and
Matched Filter – 26.5× –

1 Introduction
Revolutionary advances in computer graphics technologies, driven by the needs of 3D
gaming, have resulted in specialized SIMD floating point rendering engines known as
Graphics Processing Units, or GPUs. These GPUs are programmed via graphics libraries
such as OpenGL, but have very general programming architectures. These cards are
handily exceeding Moore’s law performance predictions and are expected to continue to
do so for some time. The size and cost-competitive nature of the gaming industry

Meredith, Conger, Liu, Johnson Mobile GPUs

UCRL-TR-217422 page 2

combine to make these systems extremely affordable. Today, GPUs with over 100GF
compute power can be bought for under $300, and they are expected to increase to
around 1000GF for about that same cost in the next two years. Within the past year,
mobile GPU technology has reached nearly the same capability as workstation GPUs.
The small form factor and lower power requirements of the recently released NVIDIA
GeForce Go 6800 signals the potential for GPUs to provide a low cost solution for
embedded processing.

This project consisted of two phases. The first phase benchmarked the performance of
mobile GPUs on a variety of algorithms. These algorithms covered a wide scale, from
those that match more traditional graphics problems for which GPUs were designed, to
those that fall in the realm of general purpose programming well outside the normal
intent of GPUs. The mobile GPUs we evaluated included both high-performance and
low-power varieties; the high performance GPU evaluated was the NVIDIA GeForce Go
6800 Ultra, and the low-power GPU was the ATI Radeon x300 Mobility.

The second phase ported a full-scale hyperspectral imaging (HSI) analysis code to the
GPU and evaluated its performance on the NVIDIA card. This port is a hybrid GPU/CPU
implementation, where only the algorithms that were determined to be the most time
consuming and the best candidates for re-implementation were ported to the GPU.
LLNL’s current HSI application was used for comparison when benchmarking the
results.

The rest of this report is organized as follows. Section 2 covers background material on
GPUs – their origins in computer graphics, their architectures, and the nature of using
them for general-purpose programming. Section 3 details the first phase of the project
evaluating mobile GPUs as a whole. Section 4 covers second phase of the project porting
the hyperspectral imaging application, including background on HSI, the approach taken
for porting to GPUs, and the results. Section 5 contains reference shader source code.

2 Graphics Processing Units

2.1 Computer Graphics
The traditional purpose of real-time computer graphics has been to render realistic
imagery, and the traditional approach to doing so has been to take three-dimensional
models of the world, transform them into image space as seen by a camera, and apply
lighting and texturing to these models to make them seem truly solid and three-
dimensional.

The graphics processing pipeline reflects this. The models are represented as collections
of polygons with two or three dimensional vertices. Along with the models, the light
sources and camera are inputs to the first processing stage (Transform and Lighting).
The result of this stage is combined with texture data, or images, to input to the second
stage (Rasterization), where the final pixels are rendered to the screen. This pipeline is
shown below.

Meredith, Conger, Liu, Johnson Mobile GPUs

UCRL-TR-217422 page 3

Transform &
Lighting

Vertex Data

Rasterization
Texture Data

Output Image

Transformed Points

2.2 GPU Architectures
The first generation of 3D graphics cards accelerated merely the rasterization stage,
rendering the final image to the frame buffer drawn to the screen. However, later
generations of graphics cards started to also accelerate the transform and lighting stage.
At this point, though programmability was limited at best, the term Graphics Processing
Unit, or GPU, was first applied. A few generations later, graphics cards started to show
true programmability at both processing stages; inputs were no longer constrained to
static light sources and transformation matrices, but could now be real programs. Finally,
the most recent generations have started to allow real programming constructs like loops
and branch instructions, and they have begun to incorporate true 32-bit floating point data
storage and arithmetic.

It is these last generations of graphics cards that have shown real promise as an
alternative processor for general-purpose computing. For one reason, processing speeds
of GPUs have grown at a rate much faster than CPUs; current generations achieve 200
GFLOPS in a single chip, a factor of three faster than those of the previous year. They
are able to accomplish this partly because there is a huge mass market for graphics cards
driving competition. However, there is a fundamental aspect to computer graphics that
helps enable this as well: most graphics operations are highly parallelizable, and
processing speed increases can be often be achieved by adding more parallel pipelines.

2.3 General-Purpose Programming
Suppose you wanted to take an array of values and multiply each one by the value six.
On a standard CPU program, this is trivial: read each value from memory, multiply it,
and write it back to the same location. On a GPU, this is not quite as simple, because in
general it is not possible to read from and write to the exact same locations in graphics
memory; this situation would require separate input and output arrays.

How would this new “multiply-by-six” operation fit into the standard graphics pipeline?
The simplest way of doing it involves using texture memory as the input array, the output
image (“ frame buffer”) as the output array, and the rasterization stage of the pipeline as
the computational kernel. In this case, the transform and lighting stage is trivial and

Meredith, Conger, Liu, Johnson Mobile GPUs

UCRL-TR-217422 page 4

merely sets up the rasterization stage so that every pixel in the output array is visited
exactly once, and the computational kernel is executed exactly once for each output pixel.
This can be seen below.

T & L: No-op

Bounding Box

Computation

Input Array

Output Array

Bounding Box

Thus, for our example operation, the computational kernel for this operation becomes: (1)
read the input value corresponding to my output location, (2) multiply it by six, and (3)
return this new value to the rasterizer, which will write it to the correct output location.
Below we see the pipeline with the irrelevant portions omitted, and with 2×2 input and
output arrays causing an execution of our computational kernel exactly four times.

2D Array

2D Array

TimesSix Filter

Texture Memory

Fragment Program

Frame Buffer Memory

×6 ×6 ×6×6

It is quite possible to read from more than one input location, but the amount of data
actually read and written in each pass affects its performance, and each fragment can only
write data to its own location in the output image(s).

A GPU is not self-sufficient; these graphics chips plug in as add-on cards to an existing
computer and still require a CPU to direct their actions. Because of this, for a GPU to act

Meredith, Conger, Liu, Johnson Mobile GPUs

UCRL-TR-217422 page 5

as a co-processor, it must rely on the CPU to send it data to process and retrieve the result
when the computation is finished, and performance can thus be limited by speed of the
bus. For chained computations, the output array must be either be copied to an input
array or re-targeted as one.

2.4 GPUs as Co-processors
Interacting with a GPU is done at a high level with a graphics library like OpenGL or
DirectX. These APIs set up the input and output buffers and provide the high level
control needed to make use of the graphics cards.

These APIs, however, were not originally designed to provide the programmability
needed to execute anything but the most basic kinds of computation on the GPUs. There
are several languages in existence that are designed to compile to GPU machine code,
such as Cg and GLSL. These languages are often called “shader languages” , and the
programs are thus called “vertex shaders” (or “vertex programs”) for the transform and
lighting stage, and “pixel shaders” for the rasterization stage. Note that a “ fragment” is
what becomes a pixel after successful rasterization, so pixels shaders are commonly
called “ fragment shaders” or “ fragment programs”. In our above example where we
multiplied the elements of an array by six, our computational kernel was a fragment
shader.

There are two primary kinds of buses over which the CPU and GPU communicate – AGP
and PCI Express (PCI-E). AGP is the older of the two, and not only has lower
bandwidth, but has asymmetric performance, and reading data back from the GPU is
much slower than sending it. Luckily, PCI-E is quickly becoming the prevalent standard
and seems to alleviate most of the problems with AGP.

For the case where data is generated as the output of one computation step within the
GPU and needs to be re-used as the input to another step, again there are multiple
options. The older standard for rendering offscreen images was called “pbuffers” (short
for pixel buffers), and data had to be copied from the pbuffer to a new input texture. The
newer standard, only widely available very recently, is called “FBOs” (short for Frame
Buffer Objects), and these allow a rendering target to be re-used as a texture directly
without suffering a penalty by waiting for a memory copy.

More details of the approach we used to port the HSI application to GPUs are found in
the section on hyperspectral imaging.

2.5 Related GPGPU Work
General purpose programming of GPUs (GPGPU) has become a more common research
area recently with the dawn of programmable GPUs. The GPGPU web site [17]
highlights many of the recent developments using GPUs for general purpose computation
and is often a resource of information on the field. The book GPU Gems [7], ostensibly
devoted to graphics programming, had a section devoted to general purpose computation,
and GPU Gems II [14] has almost half of its content devoted to the topic.

Recent research has been investigating the feasibility of GPUs for high performance
computing in a variety of areas. Among the applications are 3D fluid simulation [4],

Meredith, Conger, Liu, Johnson Mobile GPUs

UCRL-TR-217422 page 6

database operations [11,1], computational geometry [5,10], computer vision [16], signal
processing [13], scientific computation [2,9], and knowledge discovery [3,12].

There is even research into using GPUs in computational clusters [6], and the concept of
using novel architectures in clusters extends beyond the graphics processor, as seen by
the Playstation2 cluster at NCSA [19].

3 Mobile GPUs

3.1 Introduction
One goal of this project was to evaluate mobile GPUs for their performance, and this
requires comparing algorithms running on mobile GPUs with pure software
implementations. However, as desktop GPUs are most commonly targeted for
benchmarking in prevalent GPGPU research, it is also worthwhile to compare mobile
GPUs with desktop GPUs. This will allow us to evaluate external GPGPU results for
their applicability to the mobile processors as well.

In this section, we first comment on issues related to GPU benchmarking, and we then
examine a variety of benchmarks on a variety of both CPUs and GPUs.

The following table lists some of the performance characteristics of the cards tested:

Manufacturer Card No. of pipelines Core clock Bus

NVIDIA GeForce 6800 GT 16 350 MHz AGP

NVIDIA GeForce Go 6800 Ultra 12 425 MHz PCI-E

ATI Radeon x300 Mobility 4 300 MHz PCI-E

3.2 GPU Benchmarking
When comparing GPU performance to CPU performance for a particular algorithm, one
important question is what kind of implementation we should be comparing against.

For example, suppose we want to evaluate a GPU for its performance with FFTs. It is
assumed no GPU implementation exists, and we must write it from scratch. However,
we have a number of options for the CPU variant.

For example, we could write an implementation that is literally identical to the GPU one.
This could be used to compare CPUs and GPUs at a very low level, but for algorithms
like FFT where the GPU implementation looks nothing like what one would reasonably
use for a CPU, it makes very little sense.

As another example, we could simply hand-code a CPU implementation as we normally
would if we were to write it from scratch. This often makes sense because we have put
about the same effort into trying to optimize both the CPU and GPU variants and appears
to make the most fair comparison. (A related question is how much compiler
optimization to allow for the CPU variant – since CPU compiler optimization technology
is often mature, an order of magnitude improvement for the CPU is often seen merely by
adding a single command-line flag. Note, however, that there is less chance to heavily

Meredith, Conger, Liu, Johnson Mobile GPUs

UCRL-TR-217422 page 7

optimize GPU code as the instruction sets are rather severely restricted, so one might
argue that disallowing compiler optimization for the CPU would put it at an artificially
large disadvantage.)

A third example would be to use an industry-standard CPU implementation, such as
LAPACK or Matlab. This also makes sense, but some implementations, though
common, may either simply be slow or might make substantial accuracy tradeoffs for
improved speed.

And finally, there exist some algorithms that will profile and tune themselves to a
particular CPU and cache and can achieve orders of magnitude speedups relative to a
naïve hand-coded implementation. FFTW is one example of this.

For many benchmarks, a case could be made for picking any one of these flavors of CPU
implementation to compare GPUs with. As a result, the best practice is simply to
disclose what kind of CPU implementation you have used.

One other note to mention here – in the event that the GPU is performing at only a similar
level to the CPU, and it appears that little benefit might exist from porting that particular
algorithm to the GPU, it can be worth remembering that the CPU is often free to perform
other tasks while the GPU is performing the computation. This means that even with no
appreciable improvement on the GPU, a worst case scenario might actually be a doubling
of performance, and this might be a viable option in situations dual-core or dual-CPU
systems are not.

3.3 Geo-Registration

3.3.1 Introduction
Geo-registration refers to removing the distortions from geographic imagery. In this
context, we are mapping aerial imagery taken from a known viewpoint to a zenith
viewpoint. For some applications, this involves static imagery, and for others, motion
video is continually mapped from differing viewpoints.

3.3.2 Approach
For the CPU and GPU implementations, this corresponds roughly to drawing a texture-
mapped polygon to an offscreen buffer repeatedly from a variety of angles. To achieve
motion video geo-registration (instead of merely static imagery), the texture is updated
for every rendered image.

As usual, for the GPU approaches, we used the OpenGL library. No advanced fragment
or vertex shaders were required.

For the CPU implementation, we used the Mesa 3D rendering library. This contains
significant optimizations for the Pentium 4 architecture, including hand-coded assembler,
and would far surpass in performance any other software rendering algorithm we would
have written from scratch. As it shares an API with OpenGL, Mesa is probably the most
common 3D software rendering library used in practice.

Meredith, Conger, Liu, Johnson Mobile GPUs

UCRL-TR-217422 page 8

3.3.3 Benchmarks
In both cases, a 1000×1000 image was registered for every rendering. Registration angle
was varied continuously across 180° and rendered to a 6 million pixel output buffer. For
the video imagery test, a new texture was generated and used for every output frame.

Geo-Registration of Video and Static Imagery

0.001

0.01

0.1

1

10

Video Imagery Static Imagery

T
im

e
(s

ec
) NVIDIA GeForce 6800 GT

NVIDIA GeForce Go 6800 Ultra

ATI Radeon x300 Mobility

CPU Pentium4 2.8 GHz

CPU PentiumM 2.0 GHz

Note that the figure above shows the comparisons on a logarithmic scale.

3.3.4 Results
One observation to make is a comparison between the GPU implementations and the
CPU implementations. For video imagery, the GPU variants were faster than the CPU by
a range of 30x to 158x. For static imagery, the GPU variants were faster than the CPU by
a range of 70x to 1040x. Note that the Mesa library was not optimized well for the
Pentium M; if we restrict the comparison to the only against the Pentium 4, the GPU
variants are still 30x to 60x faster for video imagery, and still 70x to 400x faster for static
imagery.

Also of interest are comparisons among only the GPUs. The fastest is the NVIDIA
GeForce 6800 GT, which is the desktop video card. However, the laptop GeForce Go
6800 Ultra is only 10% to 20% slower in this application, despite having only 12
pipelines versus the desktop’s 16. The higher clock rate of the mobile unit probably help
the static test almost as much as the extra pipelines, and the PCI-E bus probably helps the
video test quite dramatically as well.

The extremely low power ATI Radeon x300 Mobility still performs quite admirably.
With only 4 pipelines and a much lower clock, it is still only a factor of two slower than
the desktop 6800 GT for video geo-registration. However, in the static test it was almost
6x slower than the 6800 GT. The close performance on the video test illustrates the
importance of the bus speed when streaming data onto a GPU.

Meredith, Conger, Liu, Johnson Mobile GPUs

UCRL-TR-217422 page 9

3.4 Document Indexing

3.4.1 Introduction
This test is a GPGPU application which converts a document into a fixed-length vector.
The input to the application is a plaintext document, and the output is a count of how
many times each dictionary word appears in the document. The words in the document
and dictionary are stemmed, so that different forms of the same word appear only once.
For example, “ jump” and “ jumped” both map to the same location in the output vector.

3.4.2 Approach
For both the CPU and GPU versions, a hand-coded brute-force lookup was used, where
the dictionary words were each compared with the document words. For the GPU
variant, the document was broken into small chunks and streamed onto the GPU as
texture data, while the dictionary itself was stored in on-card GPU texture memory.
Partial results were accumulated in the output buffer using alpha blending. The NVIDIA
Cg language and libraries were used for the fragment program.

3.4.3 Benchmarks
For this particular test, the dictionary contained 42,625 stemmed words, with
semantically meaningless words such as articles and pronouns removed. The input
documents were 4,348 medical abstracts. Stemming was performed before indexing, and
so only the indexing times are measured here. The number of words streamed into the
GPU were varied from 1 to 10 per rendering pass.

Text Document Indexing

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10

Number of Words per Pass

T
im

e
(s

ec
)

NVIDIA GeForce 6800 GT
NVIDIA GeForce Go 6800 Ultra

CPU Pentium4 2.8GHz

Meredith, Conger, Liu, Johnson Mobile GPUs

UCRL-TR-217422 page 10

3.4.4 Results
Both GPUs tested are about 5x faster than the CPU on average. Since no matter how
many words are evaluated per pass, the total workload is the same, the variation within
each card must be due to other factors, such as bandwidth/latency characteristics of the
bus, cache performance, and memory layout. For example, both the Go6800Ultra and the
6800GT experienced a reproducible local minimum at 8 words per pass, which would
result in a power-of-two size texture internally, and GPU architectures have historically
been tuned to achieve the highest performance on textures like this.

Also note that the 6800GT performance drops off with larger chunks of input data and
the Go6800Ultra does not. As the two GPUs have different buses, different clock speeds,
and different pipelines, it is hard to determine with more specificity the exact cause.
However, it is significant that increasing performance by streaming the data in instead of
working with data already on the card is not a result unique to this application nor is it
relegated to the 6800GT alone – the same behavior is also seen on the Go6800Ultra in the
HSI application benchmarks. Thus, this benchmark simply appears likely to exhibit the
behavior and the differences between the cards affect only the degree to which it
manifests itself.

A related observation is that, in many cases, the mobile Go6800Ultra chip bests the
desktop 6800GT, despite having fewer parallel processing pipelines. The simplest
explanation is that this application makes poor use of the parallelism on the GPU, and the
higher clock speeds of the mobile chip are more advantageous than more parallelism.

3.5 Convolution

3.5.1 Introduction
This test performs a two-dimensional floating-point convolution of one image with a
smaller kernel image. While the kernels can be arbitrary, in practice they can often be
generated procedurally. Examples of procedural kernels in image processing include a
median filter, a Gaussian blur filter, or an edge-detection filter.

3.5.2 Approach
On the CPU, the implementation is a straightforward convolution of two floating-point
input arrays. On the GPU, the input image and the kernel both reside in texture-memory,
resulting the “2-texture” algorithm. However, as some kernels are not arbitrary, we also
implemented a procedural kernel, in this case a median filter.

3.5.3 Benchmarks
All benchmarks were run on a 512×512 input image with full floating-point precision
while the kernel size was varied from 3×3 to 15×15. The two charts below show the
same data at different scales.

The first chart has an expanded range to emphasize comparisons between the GPU
implementations and the CPU implementation.

Meredith, Conger, Liu, Johnson Mobile GPUs

UCRL-TR-217422 page 11

The second chart, below, has a reduced range to show the GPU variants in comparison
with one another.

2D Floating-Point Convolution
(range emphasizing CPU-GPU comparisons)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

3 5 7 9 11 13 15

Kernel Size (NxN)

T
im

e
(s

ec
)

P4 2.8 GHz

Go6800U 2-Texture

6800GT 2-Texture

x300 2-Texture

Go6800U Procedural

6800GT Procedural

x300 Procedural

2D Floating-Point Convolution
(range emphasizing GPU comparisons)

0.00

0.01

0.02

0.03

0.04

0.05

3 5 7 9 11 13 15

Kernel Size (NxN)

T
im

e
(s

ec
)

P4 2.8 GHz

Go6800U 2-Texture

6800GT 2-Texture

x300 2-Texture

Go6800U Procedural

6800GT Procedural

x300 Procedural

Meredith, Conger, Liu, Johnson Mobile GPUs

UCRL-TR-217422 page 12

3.5.4 Results
For this application, the higher performing GPUs clearly hold an advantage over CPUs.
While not a traditional operation for a graphics card, convolution nevertheless makes use
of similar image processing operations for which the GPUs are designed. On the
NVIDIA GPUs, the two-texture implementation ran up to 12x faster than the CPU, and
the procedural implementation up to 30x faster than the CPU.

Unfortunately, because we were using the Cg language from NVIDIA, we were limited
in the features we could use for the ATI GPUs, and thus the ATI Radeon x300 was not
able to scale past the 3x3 kernel size. However, it is important to note that even having a
much lower clock speed and many fewer pipelines, this card nevertheless performed
nearly as well on this GPGPU task as the optimized CPU. Furthermore, if one were to
extrapolate the NVIDIA GPU results to the ATI card for higher kernel sizes, it is likely
the x300 would have handily beaten the GPU had we been able to rewrite the benchmark
using another shader language.

Comparing between only the desktop 6800GT GPU and the mobile Go6800Ultra GPU,
we see that the mobile GPU runs about 5% to 18% slower for the two-texture version,
and about 12% to 36% slower for the procedural version. Here, again, we see the
tradeoff for fewer pipelines but a higher clock speed.

Slightly more interesting is the fact that for most kernel sizes, the procedural
implementation is much faster than the two-texture implementation. What this implies is
that too much reading from texture memory can become very expensive, and in many
cases one could improve performance by replacing texture lookups with more
computation.

3.6 Analysis
With the NVIDIA GeForce Go 6800 Ultra, it is clear that very few sacrifices need to be
made for mobile GPUs compared with even high end GPUs; a high-end mobile GPU
performs almost as well, and sometimes better, than a high-end desktop GPU, depending
on the test.

One consideration for embedded applications is power usage. While exact power usage
statistics are difficult to obtain, we can provide reasonable estimates for our cards. First,
note that while our benchmarks used the 6800 GT, a 6800 Ultra desktop GPU does exist;
however, it has such high power requirements (maximum draw of 110W) that for
practical reasons no available test systems had it installed. In real-life tests, the 6800 GT
we used draws about 80% the power of the desktop 6800 Ultra (and has about 80% the
clock speed as well), putting its maximum draw around 88W. By comparison, the Go
6800 Ultra GPU has a clock speed comparable to the desktop 6800 Ultra, and its
maximum power draw is relatively low at 66W.

For lower power usage embedded applications, it is worth pointing out that a mobile Go
6800 (not an Ultra) is also available, which draws at most 27W. Finally, as the above
benchmarks show, the ATI Radeon x300 can perform admirably in some applications,
with power usage far below any of the other options we explored in this report.

Meredith, Conger, Liu, Johnson Mobile GPUs

UCRL-TR-217422 page 13

3.7 Future Technologies
A new generation of graphics cards appears regularly, and it comes as no surprise that as
of this writing, the next generation of GPUs is already here. From NVIDIA comes the
GeForce 7800 series, with the high-end desktop version containing 24 pixel pipelines – a
50% increase over the desktop 6800 series. ATI has its new generation as well, with
updated versions of the x300 and x800 called the x1300 and x1800, the latter of which
has a 650 MHz core clock.

Concerning mobile GPUs, only the NVIDIA is here so far, with a high-end GeForce Go
7800 GTX already available. Specifications are similar to the desktop version, with 24
pixel pipelines, and the same power budget as the older Go 6800 Ultra.

4 Hyperspectral Imaging

4.1 Background
Hyperspectral instruments (HSI) typically collect between 128 and 256 spectral channels
simultaneously for each pixel in the image, with two-byte precision. A single image
might contain 256 × 256 × 256 × 2 = 32 MB of data, and is often referred to as a “data
cube”. Instruments can be tasked to collect a large number of data cubes in a short time,
which results in substantial data volumes to process.

The HSI processing logic strives to extract regions that are spectrally anomalous
compared with the average background. Detecting anomalies generally requires the
following processing steps on every HSI cube:

1. Calibration of the data, and bad pixel repair. The raw image cube is calibrated by
comparing each pixel’s value in the image to the value of the same pixel when looking at
one or more calibration sources with known temperatures. Typically two calibration
sources are used to bound the temperature of the scene between known values for each
pixel.

2. Calculation of a background model for the image. A covariance matrix is used as a
concise model of the background, and captures the average relationship between each
spectral band in the image.

3. Inversion of the covariance matrix. The inverse covariance matrix provides a
transformation matrix that can be used to suppress background features from the image.

4. Matched filtering using reference spectra. The basic matched filter formula is as
follows:

 Mf = s × K-1 × (x – xavg) (1)

 where s is the spectrum
 K-1 is the inverse covariance matrix
 (x – xavg) is the mean-subtracted image cube

Meredith, Conger, Liu, Johnson Mobile GPUs

UCRL-TR-217422 page 14

5. A threshold is applied to the matched filter image to highlight pixels which are
anomalous. Typically a threshold of two to three standard deviations is appropriate.

6. Clusters of anomalous pixels which connect are aggregated to create ‘super pixels” .
Super-pixels represent detections of spectral anomalies, but are not considered definitive.

7. The spectrum of each super pixel (after whitening) is compared to that of library
spectra. The quality of the least-squares fit of the super-pixel spectrum compared to that
of the library spectra is a strong indication of the existence of that spectra in the image.

With typical desktop computers the HSI processing chain requires about 10 minutes of
computation per data cube. Step 1 (calibration) is rapid for sensors which operate at very
low temperature (e.g. 5° K), but can be 50% of the computational time when working
with sensors that have 1% or more non-functional pixels. Steps 2 and 4 are
computationally expensive, and take 40-80% of the processing time. Steps 3 and 5-7 are
generally fast.

4.2 Approach

4.2.1 Introduction
The match filtering step detects the presence of known signatures from a library ns in the
sampled hyper-spectral data cube x using their spectral signatures, and is given by the
following equation:

()1

1

T
n

T
n n

−

−

� −

�

s x x

s s
 (2)

The covariance matrix � is necessary to pre-filter the data and remove background noise.
The inputs to our system are x and ns , where x is a 3D calibrated hyper-spectral data
cube (band × sample × frame) laid out in memory in band-major order, and ns is a 2D
matrix (spectra × bands) of spectra and their frequency response. Throughout the
computation, x is interpreted as a 2D matrix, and x is a vector of means computed from
its columns. The computation of the covariance matrix � and its inverse from x is
followed by a few matrix products. The columns of the resulting 2D matrix (signatures ×
sample × frame) are each interpreted as a 2D image, with the respective spectral features
highlighted. Equation 2 is very expensive to evaluate for our large data sets, but
fortunately there are many opportunities to exploit instruction/data parallelism in each of
the three principal components of this computation: covariance calculation, matrix
inversion, and matrix multiplication. Each component can be implemented efficiently on
a multi-processor system.

We selected the NVIDIA GeForce Go 6800 Ultra (Go6800Ultra) mobile graphics card as
a hardware platform to implement these operations. The Go6800Ultra contains 12
processor cores with 256MB of 400MHz GDDR3 texture memory and is capable of 234
GFLOPS and 38.4 GB/s of memory bandwidth. In contrast, a dual-core Intel Pentium D
840 processor running at 3.2GHz achieves roughly 25.6 GFLOPS using the SSE3
extensions. We program the Go6800Ultra card using the OpenGL API and the GLSL
shading language. As usual, the OpenGL function calls are responsible for ancillary
tasks such as initializing data transfers, setting the state of the graphics card, and invoking

Meredith, Conger, Liu, Johnson Mobile GPUs

UCRL-TR-217422 page 15

execution passes. The actual work of performing the computational task is mostly
specified by GLSL shaders, which are compiled at run-time into microcode by the
graphics card driver. GLSL is a high level programming language based on ANSI C, and
is extended with vector and matrix types — and SIMD instructions that operate on these
types — to concisely describe many of the typical operations involved in 3D computer
graphics [18]. Due to the nature of the graphics hardware architecture and its associated
resource limitations, the compiler is highly restrictive in the types of instructions and
control flow that it allows. For example, recursion is not allowed, all loops must
terminate, and all parameters to functions are call-by-value.

In general, GLSL shaders function exactly as described earlier, with only subtle
restrictions. For example, we use vertex shaders to specify the area of computation for a
task and to assign a 2D texture coordinate to each constituent fragment within this area,
and we use fragment shaders to specify how each fragment should be processed.
However, the complexity of a GLSL shader cannot ever exceed 32 temporary registers
since they cannot be paged during an execution pass. During each execution pass, a
fragment processor can use a fragment’s texture coordinates as a virtual memory address
to read data from up to 16 input textures and write data to 4 output textures.
Computational tasks that cannot fit within the limitations of a single execution pass must
obviously span across multiple fragment shaders and execution passes. Since large
memory transactions are very expensive across the PCI-E bus (PCI-E has only 4 GB/s of
bandwidth), we attempt to keep intermediate data resident in texture memory between
passes and copy out only the final output data.

4.2.2 Covariance Matrix
The covariance matrix � is a symmetric matrix given by:

 () ()()cov ,ij i j i i j jσ µ µ= ≡ − −x x x x (3)

where i iµ = x is the mean of variate ix . Calculating the covariance using Equation 3

requires a first summation pass over the data samples to compute µ , followed by a
second summation pass to compute the mean dot product of the mean-subtracted variates.
Fortunately, Equation 3 can also be rewritten to compute the covariance in a single
summation pass:

 ()cov ,i j i j i jµ µ= −x x x x (4)

When written in this form it is obvious that the covariance computation involves three dot
products:

 () () ()()()1
cov ,i j i j i jn

= ⋅ − ⋅ ⋅x x x x x 1 x 1 (5)

Each ijσ is computed independently in exactly the same way; this lack of data

dependency allows us to efficiently exploit SIMD parallelism in carrying out the
computation. Moreover, since � is symmetric, only half of its entries (along with the
main diagonal) need to be computed. The dot product summations occur over very large
sets of numbers and require several execution passes to complete. Each pass operates on
a segment of the data set and is initiated by using OpenGL calls to draw a lower triangle

Meredith, Conger, Liu, Johnson Mobile GPUs

UCRL-TR-217422 page 16

that covers the computation area. The fragment processor loads the data segment and the
accumulated tally (originally initialized to zero), computes dot products using the native
four component dot product instruction, and then writes the updated tally into the output
texture. After computing the dot products, the final execution pass combines the results
together by Equation 5. The results are copied out of texture memory and then � is
formed by completing its upper triangle using data values from the lower triangle.

The GLSL shader code for dot product portion of the computation is listed in
sum_of_terms.vs and sum_of_terms.fs. During each execution pass, the input data
segment is stored as 12 four-component 1D textures as shown in Figure 1. The vertex
shader assigns a position and a pair of texture coordinates to each fragment. The
fragment shader uses its position to retrieve the current accumulated sum (line 33) and
the texture coordinates to index the corresponding data elements from the textures (lines
34-45). The dot products are computed (lines 47-58), and finally summed together (lines
60-62). In each execution pass the fragment processor sums together 48 data elements
for each dot product. The floating point arithmetic performed by fragment processors is
not fully IEEE compliant, and may introduce rounding off errors that are magnified and
become significant when many numbers together are summed together. To improve the
precision, we simulate double floating point arithmetic by representing operands using
two floating-point numbers and defining special arithmetic functions (lines 6-27) that
operate over them. Since computing both i ⋅x 1 and j ⋅x 1 is redundant for each fragment,

we only compute i ⋅x 1 (this is also redundant, but we observe that it is cheaper in practice
to perform this computation while evaluating i j⋅x x than to execute its own set of

summation passes). The output from the fragment processor are the intermediate results
for i j⋅x x and i ⋅x 1, which both occupy two components (line 66). After the dot products

Figure 1: Data layout for covar iance matr ix computation. Each execution pass processes a segment

of the data cube using 12 four -component 1D textures.

Meredith, Conger, Liu, Johnson Mobile GPUs

UCRL-TR-217422 page 17

terms are computed, they are combined using the fragment shader covar iance.fs (and the
default vertex shader ver tex.vs). The computation here is straightforward: the terms are
loaded and then combined together to output the covariance value ijσ and the mean iµ (to

be used later for the mean subtraction step).

4.2.3 Matrix Inverse
There are several ways to compute the matrix inverse. Gauss-Jordan elimination (with
full pivoting) is the most straightforward, but not the most efficient. Furthermore, � is
typically ill-conditioned, and its inverse matrix computed by Gauss-Jordan Elimination
will likely be very sensitive to numerical error. A better approach would be to compute
the singular value decomposition (Takagi factorization) of � , and zero out the small
eigenvalues to improve the conditioning of the matrix and compute a pseudo-inverse.
However, this step is even more computationally expensive. The preferred strategy
would be to calculate the LU factorization of � and use back-substitution to obtain its
inverse. However, we can use back-substitution to instead compute 1T −Σs without
performing either an explicit inverse or a matrix multiplication. This is more numerically
stable and also more efficient than the latter two approaches. In our system, these three
routines are implemented in C (adapted from Numerical Recipes in C):

void gauss_jordan_inv(int n, float *data);
void svdcmp(float **a, int m, int n, float w[], float **v);
void ludcmp(float **a, int n, int *indx);
void lubksb(float **a, int n, int *indx, float b[], float x[]);

These routines can all be efficiently implemented on graphics cards [8], but the CPU
implementations actually perform better for our small problem size. Nevertheless, the
matrix inverse computation requires very little processing time relative to the covariance
computation and matrix multiplication, so our focus for this step is on improving the
precision of the results, rather than the performance of the computation. To this end, we
can use double precision whenever appropriate to preserve the numerical accuracy. We
currently use the LU factorization and back-substitution C routines in our system to
compute the term 1T −Σs .

4.2.4 Matrix Multiplication
We implement matrix multiplication routines to evaluate 1()T −Σs s and 1()T −Σ −s x x . In the
first term, we are only interested in the diagonal of the matrix, and full matrix
multiplication is required for the latter term so these computations are implemented
separately using different shaders. However, in both cases, we need to compute the dot
products between the column vectors from one matrix and the row vectors from another.
The two implementations are very similar to the covariance computation, but we batch
the data segments differently to maximize the available resources; we use 4 four-
component 1D textures to store data segments from each operand matrix and during an
execution pass, each fragment processor computes 4 dot products. The vectors we
process here are much shorter than the ones in the covariance computation and the

Meredith, Conger, Liu, Johnson Mobile GPUs

UCRL-TR-217422 page 18

numerical rounding off errors have little impact on our results, so we do not implement
double-precision arithmetic for this summation.

The first term 1()T −Σs s is evaluated using the shaders norm_sqrd.vs and norm_sqrd.fs,
and its square root is computed by executing sqr t_norm.fs (using default.vs) and the
second term 1()T −Σ −s x x is computed using multiply_data.vs and multiply_data.fs; the
vector of sample means x is subtracted from x before it is copied into texture memory.
The matrix multiplication is performed via dot products, and the results are then
normalized using the computed norms. Since x is typically very large, the matrix
multiplication is computed in blocks and requires many execution passes.

4.3 Benchmarks
We compare the performance of our GPU implementation against our software
implementation using a data cube consisting of 240 spectral bands, 240 spatial samples,
and 400 frames with a library of 16 spectra. The results of the computations are stored as
16 intensity images that are each normalized to [0,255], quantized to 8-bit, and saved in
the portable gray map (PGM) image format.

4.4 Results

4.4.1 Performance
Our GPU implementation generated the images in 4.25 seconds while the software
implementation required 112.47 seconds, representing a speedup factor of 26.46.

It is worth noting that this speedup factor is independent of the input data, and should
remain largely the same with different data set sizes. Specifically, as the size of the data
used for this benchmark is near expected levels, this same speedup factor is expected in
real-life application as well.

4.4.2 Accuracy
We measure the peak signal-to-noise ratio (PSNR) of our results with the software
generated images to be 33.36 dB. As a reference, PSNR values in image compression are
typically between 30 and 40 dB.

Later steps in the process find anomalous pixels in terms of a threshold at some distance
from the mean. We can calculate the similarity in a very strict manner by calculating the
overlap of anomalous pixels between the CPU and GPU results. Specifically, this is the
number of pixels in the intersection between the set of anomalous pixels in the CPU and
GPU divided by the number of pixels in the union of these sets. The average similarity
across the test spectra for 2σ is 80.1% and for 3σ is 80.9% . (Note, that this similarity
metric is strict in that it counts both extraneous and missing pixels as errors. If one were
to simply ask, for example, how many of the CPU anomalies were also found by the
GPU, the accuracy would be above 90% for both 2σ and 3σ.)

As pointed out earlier, however, many of the pixels outside the given threshold are due to
noise and magnified by small numerical errors. To estimate the true error with more
accuracy, we can help eliminate this noise by comparing only the anomalous pixels that
are surrounded by other anomalous pixels – i.e. by using a simple implementation of the

Meredith, Conger, Liu, Johnson Mobile GPUs

UCRL-TR-217422 page 19

super-pixel concept described above as step 6 of the HSI application. For this case, the
average similarity for 2σ is 86.8% and for 3σ is 88.5%. (Again, using a weaker
definition of similarity, this means that the GPU found about 94% of the anomalous
pixels that the CPU found for both 2σ and 3σ.)

By combining and automating both step 5 and step 6, we can perform an even more
accurate comparison of how the CPU and GPU results affect the final analysis in real-
world usage. Specifically, we implemented a comparison that would count the number of
clusters of anomalous pixels (i.e. super-pixels) larger than a certain size, using the largest
threshold that still results in at least one cluster. These most closely estimate real features
in the data. Specifically, after the first noise reduction step, we counted the number of
anomalous clusters with more than 10 connected pixels at 3σ. If at 3σ a certain spectrum
contained no clusters of this size for either the CPU or GPU, we lowered the threshold to
2σ, and finally to 1σ if necessary. For this case the GPU and CPU found 100% of the
same clusters for every spectrum, implying that in general there will most likely be no
differences in the actual features found in the HSI application. The actual number of
clusters found using this technique, and the threshold used to find them, are listed here:

Spectrum Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Max Threshold 2σ 2σ 2σ 3σ 2σ 3σ 2σ 3σ 3σ 3σ 3σ 3σ 3σ 1σ 2σ 3σ
GPU Super-pixels 1 2 1 1 3 1 1 2 2 1 4 3 4 0 1 3
CPU Super-pixels 1 2 1 1 3 1 1 2 2 1 4 3 4 0 1 3

Meredith, Conger, Liu, Johnson Mobile GPUs

UCRL-TR-217422 page 20

References

[1] Nagender Bandi, Chengyu Sun, Divyakant Agrawal, Amr El Abbadi. “Hardware
acceleration in commercial databases: A case study of spatial operations.” Technical
report, Computer Science Department, University of California, Santa Barbara, 2004.

[2] Jeff Bolz, Ian Farmer, Eitan Grinspun and Peter Schröder. “Sparse Matrix Solvers on
the GPU: Conjugate Gradients and Multigrid.” ACM Transactions on Graphics 22, 2003.

[3] David Bremer, John Johnson, Holger Jones, Yang Liu, and Jeremy Meredith,
“Graphics Processing Units (GPUs) for General Purpose High Performance Computing” ,
To appear in the ACM/IEEE SC|05 Conference, 2005.

[4] Youquan Liu, Xuehui Liu, Enhua Wu. “Real-Time 3D Fluid Simulation on GPU with
Complex Obstacles,” 12th Pacific Conference on Computer Graphics and Applications
(PG|04), 2004.

[5] Quanfu Fan, Alon Efrat, Vladlen Koltun, Shankar Krishnan, and Suresh
Venkatasubramanian. “Hardware Assisted Natural Neighbour Interpolation” .
Proceedings of the 7th Workshop on Algorithms Engineering and Experimentation, 2004.

[6] Zhe Fan, Feng Qiu, Arie Kaufman, Suzanne Yoakum-Stover. “GPU Cluster for High
Performance Computing” . Proceedings of the 2004 ACM/IEEE SuperComputing
(SC|04), 2004.

[7] Randima Fernando, GPU Gems: Programming Techniques, Tips, and Tricks for Real-
Time Graphics. Addison-Wesley Professional, 2004.

[8] Galoppo N, GovinDaraju NK, Henson M, and Manocha D. “LU-GPU: Efficient
Algorithms for Solving Dense Linear Systems on Graphics Hardware.” In Proceedings
of the ACM/IEEE SC|05 Conference, 2005.

[9] Nolan Goodnight, Cliff Woolley, Gregory Lewin, David Luebke, and Greg
Humphreys. “A Multigrid Solver for Boundary Value Problems Using Programmable
Graphics Hardware.” Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
Conference on Graphics Hardware, 2003.

[10] Naga K. Govindaraju, Stephane Redon, Ming C. Lin and Dinesh Manocha.
“CULLIDE: Interactive Collision Detection Between Complex Models in Large
Environments Using Graphics Hardware” . Proceedings of the Eurographics/SIGGRAPH
Graphics Hardware Workshop, 2003.

[11] Naga K. Govindaraju, Brandon Lloyd, Wei Wang, Ming Lin, Dinesh Manocha.
“Fast computation of database operations using graphics processors” . Proceedings of the
2004 ACM SIGMOD International Conference on Management of Data, 2004.

[12] John Johnson and Jeremy Meredith, “The Evaluation of GPU-Based Programming
Environments for Knowledge Discovery” , High Performance Embedded Computing
Workshop, 2004.

[13] Kenneth Moreland and Edward Angel. The FFT on a GPU. Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, 2003.

Meredith, Conger, Liu, Johnson Mobile GPUs

UCRL-TR-217422 page 21

[14] Matt Pharr and Randima Fernando, GPU Gems 2 : Programming Techniques for
High-Performance Graphics and General-Purpose Computation. Addison-Wesley
Professional, 2005.

[15] William H Press, et al. Numerical Recipes in C, Cambridge, University Press, 1992.

[16] Robert Strzodka, Marc Droske and Martin Rumpf. “ Image Registration by a
Regularized Gradient Flow - A Streaming Implementation in DX9 Graphics Hardware” .
Computing, 73(4), 373-389, Springer, 2004.

[17] GPGPU Web Site. http://www.gpgpu.org

[18] OpenGL Shading Language. http://www.opengl.org/documentation/oglsl.html

[19] Scientific Computing on the Sony Playstation 2.
http://arrakis.ncsa.uiuc.edu/ps2/index.php

